Mądry podział parceli

Dwaj bracia otrzymali w spadku po ojcu duży oparkaniony dookoła plac w kształcie trójkąta. Postanowili podzielić go na równe części po linii prostej tak, żeby na wspólnej granicy można było postawić jak najkrótszy parkan.

Niełatwą miał pracę mierniczy, do którego z takim zwrócili się żądaniem. Począł jednak przypominać sobie różne prawidła geometryczne i wreszcie odszukał miejsce, w którym należało pociągnąć granicę. Pójdźmy za jego rozumowaniem:

Ze wszystkich trójkątów o danej podstawie i danym kącie przy wierzchołku największe pole będzie miał trójkąt równoramienny, ponieważ geometrycznym miejscem wierzchołków takich trójkątów będzie łuk mieszczący dany kąt, a najwyższy punkt łuku leży w jego środku. Odwrotnie więc powiedzieć można, że ze wszystkich trójkątów mających dane pole i dany kąt u wierzchołka najmniejszą podstawę ma trójkąt równoramienny. Ze wszystkich zaś trójkątów równoramiennych mających dane pole ten będzie miał najmniejszą podstawę, którego kąt u wierzchołka będzie najmniejszy.

Z geometrii elementarnej wiadomo ponadto, że pola dwóch trójkątów mających jeden kąt wspólny mają się tak do siebie, jak iloczyny boków tworzących ów kąt wspólny.

tmp6792-1Na zasadzie powyższych przesłanek należało w trójkątnej parceli ABC (obacz rysunek) od wierzchołka A, którego kąt jest najmniejszy, odłożyć wzdłuż obu boków odcinki AM = AN równe średniej proporcjonalnej między jednym z boków AB lub AC i połową drugiego boku. Linia MN będzie linią poszukiwanej granicy, gdyż
Δ AMN : Δ ABC = (AM • AN) : (AC • AB),

to znaczy

Δ AMN : Δ ABC = ½,

a więc trójkąt AMN stanowi połowę trójkąta ABC.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *